Surface comparison and matching is a challenging problem in computer vision. While reparametrization-invariant Sobolev metrics provide meaningful elastic distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields (SRNF) considerably simplify the computation of certain elastic distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce elastic distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.
翻译:地面对比和匹配是计算机视觉中一个具有挑战性的问题。 虽然重新对称- 变化中的 Sobolev 度量指标通过大地边界值问题提供了有意义的弹性距离和点对应, 但通过大地边界值问题提供了有意义的弹性距离和点对应, 在数字上往往很难解决这个问题 。 平方根正态字段( SRNF) 大大简化了对地对称表面表面之间某些弹性距离的计算。 但是它们留下了寻找最佳再平衡问题, 从而在未对称表面之间产生弹性距离。 这个问题近年来已经集中了许多努力, 并导致若干数字框架的开发。 在本文中, 我们采取了一种替代方法, 绕过对重新修复的直接估计: 我们用辅助的对称性对称( SRN) 平面平坦正态平坦度平坦度( SRN) 来放松大地边界限制。 通过完全避免重新对称正态化的需要, 它提供了处理这些任意地表层和取样和采样模式的简单性模。 此外, 问题本身会形成一种可分化的可分解的多级的多级的多级的合成图形图, 也使得我能够展示成平面图。