For an ill-posed inverse problem, particularly with incomplete and limited measurement data, regularization is an essential tool for stabilizing the inverse problem. Among various forms of regularization, the lp penalty term provides a suite of regularization of various characteristics depending on the value of p. When there are no explicit features to determine p, a spatially varying inhomogeneous p can be incorporated to apply different regularization characteristics that change over the domain. This approach has been investigated and used for denoising problems where the first or the second derivatives of the true signal provide information to design the spatially varying exponent p distribution. This study proposes a strategy to design the exponent distribution when the first and second derivatives of the true signal are not available, such as in the case of indirect and limited measurement data. The proposed method extracts statistical and patch-wise information using multiple reconstructions from a single measurement, which assists in classifying each patch to predefined features with corresponding p values. We validate the robustness and effectiveness of the proposed approach through a suite of numerical tests in 1D and 2D, including a sea ice image recovery from partial Fourier measurement data. Numerical tests show that the exponent distribution is insensitive to the choice of multiple reconstructions.
翻译:对于一个错误的反向问题,特别是测量数据不完整和有限的问题,正规化是稳定反向问题的基本工具。在各种形式的正规化中,lp处罚术语提供一系列取决于p的价值的不同特征的正规化。当没有明确的特征可以确定p时,可以纳入一个空间上差异不一的p,以应用在域上变化的不同正规化特征。在真实信号的第一或第二衍生物提供信息以设计空间上差异的指数分布时,这一方法已被调查并被用于解密问题。本研究提出在真实信号的第一和第二衍生物没有可用时设计出一个战略,例如间接和有限的测量数据。拟议方法利用从单一测量中进行多重重建的方式提取统计和对称信息,帮助对每个补丁进行分类,使其具有相应的p值。我们通过在1D和2D中进行一组数字测试,包括从部分四级测量数据中恢复海冰图像,从而验证拟议方法的稳健性和有效性,包括从部分四面测量数据中进行海洋冰图象恢复。Numericreal restial estations reports