Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition; however, GAN is usually known to suffer from instability and sensitivity to hyper-parameters. In contrast to these methods, we propose in this paper a novel active learning framework that we call Maximum Classifier Discrepancy for Active Learning (MCDAL) which takes the prediction discrepancies between multiple classifiers. In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them. Intuitively, the discrepancies in the auxiliary classification layers' predictions indicate the uncertainty in the prediction. In this regard, we propose a novel method to leverage the classifier discrepancies for the acquisition function for active learning. We also provide an interpretation of our idea in relation to existing GAN based active learning methods and domain adaptation frameworks. Moreover, we empirically demonstrate the utility of our approach where the performance of our approach exceeds the state-of-the-art methods on several image classification and semantic segmentation datasets in active learning setups.
翻译:最近最先进的积极学习方法大多是利用基因反转网络(GAN)进行抽样获取;然而,GAN通常被认为具有不稳定性和对超参数的敏感性。与这些方法不同,我们在本文件中提出了一个新的积极学习框架,我们称之为“积极学习最大分级差异”(MCDAL),这个框架采用多种分类器之间的预测差异。特别是,我们使用两个辅助分类层,通过尽可能扩大它们之间的差异来了解更紧的决定界限。自然,辅助分类层预测中的差异表明预测中的不确定性。在这方面,我们提出了一种新颖的方法,用以利用分类器差异来积极学习获取功能。我们还就现有的基于GAN的积极学习方法和领域适应框架提供了我们的想法的解释。此外,我们从经验上证明了我们方法的效用,即我们方法的性能超过了几个图像分类和积极学习设置中的语义分割数据集中的最新方法。