Pre-training on time series poses a unique challenge due to the potential mismatch between pre-training and target domains, such as shifts in temporal dynamics, fast-evolving trends, and long-range and short cyclic effects, which can lead to poor downstream performance. While domain adaptation methods can mitigate these shifts, most methods need examples directly from the target domain, making them suboptimal for pre-training. To address this challenge, methods need to accommodate target domains with different temporal dynamics and be capable of doing so without seeing any target examples during pre-training. Relative to other modalities, in time series, we expect that time-based and frequency-based representations of the same example are located close together in the time-frequency space. To this end, we posit that time-frequency consistency (TF-C) -- embedding a time-based neighborhood of a particular example close to its frequency-based neighborhood and back -- is desirable for pre-training. Motivated by TF-C, we define a decomposable pre-training model, where the self-supervised signal is provided by the distance between time and frequency components, each individually trained by contrastive estimation. We evaluate the new method on eight datasets, including electrodiagnostic testing, human activity recognition, mechanical fault detection, and physical status monitoring. Experiments against eight state-of-the-art methods show that TF-C outperforms baselines by 15.4% (F1 score) on average in one-to-one settings (e.g., fine-tuning an EEG-pretrained model on EMG data) and by up to 8.4% (F1 score) in challenging one-to-many settings, reflecting the breadth of scenarios that arise in real-world applications. The source code and datasets are available at https: //anonymous.4open.science/r/TFC-pretraining-6B07.
翻译:时间序列培训前是一个独特的挑战,因为培训前与目标领域之间可能不匹配,例如时间动态变化、快速变化趋势以及长程和短程周期效应,这可能导致下游业绩不佳。虽然地区适应方法可以缓解这些变化,但大多数方法直接需要目标领域的例子,使其在培训前不最优化。为了应对这一挑战,方法需要容纳目标领域,时间动态不同,并且能够在培训前不看到任何目标实例的情况下这样做。与其他模式相比,在时间序列中,我们预计同一实例的时间基和频基表达在时频空间中相近。为此,我们假设时间-频率一致性(TF-C) -- 将一个特别基于时间的街区嵌入一个与其频率相近的邻居和后方。在TF-C的激励下,我们定义了一个不易理解的训练前期/培训前模式(B在时间和频率的设置中,通过时间和频率之间的距离提供自超的自动信号,每个个人都经过对时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-