We introduce two new classes of exact Markov chain Monte Carlo (MCMC) samplers for inference in latent dynamical models. The first one, which we coin auxiliary Kalman samplers, relies on finding a linear Gaussian state-space model approximation around the running trajectory corresponding to the state of the Markov chain. The second, that we name auxiliary particle Gibbs samplers corresponds to deriving good local proposals in an auxiliary Feynman--Kac model for use in particle Gibbs. Both samplers are controlled by augmenting the target distribution with auxiliary observations, resulting in an efficient Gibbs sampling routine. We discuss the relative statistical and computational performance of the samplers introduced, and show how to parallelise the auxiliary samplers along the time dimension. We illustrate the respective benefits and drawbacks of the resulting algorithms on classical examples from the particle filtering literature.
翻译:我们引入了两种新型的精确的Markov链条Monte Carlo(MCMC)取样器,用于在潜伏动态模型中进行推断。第一种是,我们创建了辅助的Kalman取样器,它依赖于在与Markov链条状态相对应的运行轨迹周围找到根直的Gaussian州空间模型近似。第二种是,我们命名了辅助粒子Gibbs取样器,这相当于在用于粒子Gibbs的辅助Feynman-Kac模型中得出良好的本地建议。两种取样器都通过辅助观测扩大目标分布来控制,从而形成高效的Gibs取样程序。我们讨论了采样器的相对统计和计算性能,并展示了在时间维度上如何与辅助采样器平行。我们从粒子过滤文献的典型例子中展示了由此产生的算法的各自好处和优点。</s>