We present a quantum augmented variant of the dual lattice attack on the Learning with Errors (LWE) problem, using classical memory with quantum random access (QRACM). Applying our results to lattice parameters from the literature, we find that our algorithm outperforms previous algorithms, assuming unit cost access to a QRACM. On a technical level, we show how to obtain a quantum speedup on the search for Fast Fourier Transform (FFT) coefficients above a given threshold by leveraging the relative sparseness of the FFT and using quantum amplitude estimation. We also discuss the applicability of the Quantum Fourier Transform in this context. Furthermore, we give a more rigorous analysis of the classical and quantum expected complexity of guessing part of the secret vector where coefficients follow a discrete Gaussian (mod \(q\)).
翻译:我们用量子随机存取(QRACM)的古典记忆将我们的结果应用到文献中的量子参数中,发现我们的算法优于以前的算法,假设单位成本可以进入QRACM。在技术层面,我们展示了如何利用FFFT相对稀少并使用量子振幅估计,在快速Fourier变换(FFT)系数超过某一阈值的搜索中实现量子加速。我们还讨论了量子变换在此背景下的适用性。此外,我们更严格地分析了计算离散高斯系数(mod \ (q\ ) ) 的离散高斯系数(mod \ (q\ ) ) 时所预测的秘密矢量值的一部分时所预测的经典和量的复杂性。