In the problem of quantum channel certification, we have black box access to a quantum process and would like to decide if this process matches some predefined specification or is $\varepsilon$-far from this specification. The objective is to achieve this task while minimizing the number of times the black box is used. Here, we focus on optimal incoherent strategies for two relevant extreme cases of channel certification. The first one is when the predefined specification is a unitary channel, e.g., a gate in a quantum circuit. In this case, we show that testing whether the black box is described by a fixed unitary operator in dimension $d$ or $\varepsilon$-far from it in the trace norm requires $\Theta(d/\varepsilon^2)$ uses of the black box. The second setting we consider is when the predefined specification is a completely depolarizing channel with input dimension $d_{\text{in}}$ and output dimension $d_{\text{out}}$. In this case, we prove that, in the non-adaptive setting, $\tilde{\Theta}(d_{\text{in}}^2d_{\text{out}}^{1.5}/\varepsilon^2)$ uses of the channel are necessary and sufficient to verify whether it is equal to the depolarizing channel or $\varepsilon$-far from it in the diamond norm. Finally, we prove a lower bound of $\Omega(d_{\text{in}}^2d_{\text{out}}/\varepsilon^2)$ for this problem in the adaptive setting. Note that the special case $d_{\text{in}} = 1$ corresponds to the well-studied quantum state certification problem.
翻译:在量子频道验证问题上, 我们拥有对量子频道验证的黑盒访问权限 { 量子回路中的大门 。 在此情况下, 我们想要确定这个程序是否符合某种预定义的规格 $( varepsilon) 或$( varepsilon) $- far 。 目标是在尽可能减少黑盒使用次数的同时完成这项任务 。 这里, 我们关注两个相关极端频道验证中的最佳不一致策略 。 第一个是预定义是一个单一的频道, 例如, 量子循环中的大门 。 在此情况下, 我们证明, 在非调整设置中, 美元( 美元) 美元( 美元) 或 美元( varepsil) 美元( $( varepsilon- far), 黑盒的用途需要$( d/ valepluslusl2) 。 我们考虑的第二个设置是当预定义是一个完全分解的频道, 输入维度 $( 美元/ text__) 美元 。 我们证明, 在非调整设置中, 美元( 美元) 美元=( taluslation__ ruslation) ruslation) revlex_ ( lex) revlexx rus) lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</s>