This work aims to produce landslide density estimates using Synthetic Aperture Radar (SAR) satellite imageries to prioritise emergency resources for rapid response. We use the United States Geological Survey (USGS) Landslide Inventory data annotated by experts after Hurricane Mar\'ia in Puerto Rico on Sept 20, 2017, and their subsequent susceptibility study which uses extensive additional information such as precipitation, soil moisture, geological terrain features, closeness to waterways and roads, etc. Since such data might not be available during other events or regions, we aimed to produce a landslide density map using only elevation and SAR data to be useful to decision-makers in rapid response scenarios. The USGS Landslide Inventory contains the coordinates of 71,431 landslide heads (not their full extent) and was obtained by manual inspection of aerial and satellite imagery. It is estimated that around 45\% of the landslides are smaller than a Sentinel-1 typical pixel which is 10m $\times$ 10m, although many are long and thin, probably leaving traces across several pixels. Our method obtains 0.814 AUC in predicting the correct density estimation class at the chip level (128$\times$128 pixels, at Sentinel-1 resolution) using only elevation data and up to three SAR acquisitions pre- and post-hurricane, thus enabling rapid assessment after a disaster. The USGS Susceptibility Study reports a 0.87 AUC, but it is measured at the landslide level and uses additional information sources (such as proximity to fluvial channels, roads, precipitation, etc.) which might not regularly be available in an rapid response emergency scenario.
翻译:这项工作的目的是利用合成孔径雷达(合成孔径雷达)的卫星成像对滑坡密度进行山体积估计,作为应急反应的优先应急资源。我们使用美国地质调查局(USGS)的地滑清单数据,这些数据是2017年9月20日波多黎各Mar\'ia飓风后专家在波多黎各Mar\'ia之后附加的,随后他们又进行了易受影响的研究,使用了大量的额外信息,如降水、土壤湿度、地质地形特征、接近水道和道路等。由于这些数据在其他事件或区域中可能得不到,我们的目标是利用仅高海拔和合成孔径雷达数据制作滑坡密度分布图,以便在快速反应情况下对决策者有用。美国地质调查局(USGS)的地滑坡清单包含71,431个地滑坡头的坐标(而不是其全部范围),随后通过对空中和卫星图像进行人工检查获得的数据。估计,大约45个山体滑坡比Sentinel-1典型的像素要小10美元,虽然许多是长和薄的,但可能会留下一些像的痕迹。我们的方法在快速反应中获得了0.14 AU值。我们的方法,用来预测准确的准确的密度数据,因此,在SAL-128号的轨道上对A级的快速估算数据进行快速评估之后,在SAR平平流流路进行。