Transferring knowledge across graphs plays a pivotal role in many high-stake domains, ranging from transportation networks to e-commerce networks, from neuroscience to finance. To date, the vast majority of existing works assume both source and target domains are sampled from a universal and stationary distribution. However, many real-world systems are intrinsically dynamic, where the underlying domains are evolving over time. To bridge the gap, we propose to shift the problem to the dynamic setting and ask: given the label-rich source graphs and the label-scarce target graphs observed in previous T timestamps, how can we effectively characterize the evolving domain discrepancy and optimize the generalization performance of the target domain at the incoming T+1 timestamp? To answer the question, for the first time, we propose a generalization bound under the setting of dynamic transfer learning across graphs, which implies the generalization performance is dominated by domain evolution and domain discrepancy between source and target domains. Inspired by the theoretical results, we propose a novel generic framework DyTrans to improve knowledge transferability across dynamic graphs. In particular, we start with a transformer-based temporal encoding module to model temporal information of the evolving domains; then, we further design a dynamic domain unification module to efficiently learn domain-invariant representations across the source and target domains. Finally, extensive experiments on various real-world datasets demonstrate the effectiveness of DyTrans in transferring knowledge from dynamic source domains to dynamic target domains.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
27+阅读 · 2020年6月19日
A Comprehensive Survey on Transfer Learning
Arxiv
118+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
13+阅读 · 2021年7月20日
Arxiv
27+阅读 · 2020年6月19日
A Comprehensive Survey on Transfer Learning
Arxiv
118+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员