Partitioning trees are efficient data structures for $k$-nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called $k$d-trees to perform $k$-nn search. Unfortunately, $k$d-trees can be ineffective in high dimensions because they need more tree levels to decrease the vector quantization (VQ) error. Random projection trees rpTrees solve this scalability problem by using random directions to split the data. A collection of rpTrees is called rpForest. $k$-nn search in an rpForest is influenced by two factors: 1) the dispersion of points along the random direction and 2) the number of rpTrees in the rpForest. In this study, we investigate how these two factors affect the $k$-nn search with varying $k$ values and different datasets. We found that with larger number of trees, the dispersion of points has a very limited effect on the $k$-nn search. One should use the original rpTree algorithm by picking a random direction regardless of the dispersion of points.


翻译:分离树是用于近邻搜索的高效数据结构。 机器学习图书馆通常使用一种特殊类型的分隔树,叫做美元- 树来进行美元- 美元搜索。 不幸的是, 美元- 树在高维方面可能无效, 因为他们需要更多的树水平来减少矢量量化错误。 随机投影树 rpTrees 通过使用随机方向来分割数据, 解决了这个可缩放性问题。 收集的 rpTrees 被称为 rpForest 。 美元- nn 搜索受到两个因素的影响:(1) 随机方向上的点分布和(2) rpTrees 在rpForest 的数量。 在这次研究中, 我们调查这两个因素如何影响 $- n 的搜索, 以不同的 美元值和不同的数据集 。 我们发现, 由于树木数量较大, 点的分散对 $k$- nn 搜索效果非常有限。 一个应该使用原始的 rpTre 算法, 选择一个随机方向, 而不考虑点的分散 。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
110+阅读 · 2020年2月5日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
110+阅读 · 2020年2月5日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员