An independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $\mathsf{TS}$- ($\mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $\mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $\mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $\mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $\mathsf{TS}$- ($\mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $\mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $\mathsf{TS}_k$-reconfiguration graph into smaller pieces.
翻译:关于令牌滑动下独立集重构图的研究
在一个图G中,一个独立集(Independent Set)是指一个顶点子集I,使得I中的任意两个顶点之间没有边相连。假设在G的一个独立集上每个顶点都放有一个令牌(Token)。$\mathsf{TS}$-($\mathsf{TS}_k$-)重构图将所有非空的独立集(大小为k)作为节点,其中k是一个给定的正整数。假设一个节点可以通过将某个顶点上的令牌滑动到其未占用的邻居上获得,则该节点与另一个节点相邻。本文重点研究这些重构图的结构和可实现性。具体来说,我们研究给定图G的两个主要问题:(1)$\mathsf{TS}_k$-重构图是否属于某些图形类别$\mathcal{G}$(包括完全图、路径、环、完全二分图、连通分裂图、最大外平面图和完全图减去一条边);(2)如果G满足某个属性$\mathcal{P}$(包括s-部分性、平面性、欧拉性、周长和团的大小),则相应的$\mathsf{TS}$-($\mathsf{TS}_k$-)重构图是否也满足$\mathcal{P}$,反之亦然。此外,我们还给出了将$\mathsf{TS}_k$-重构图分解为更小的部分的结果。