项目名称: 奇异离散线性哈密顿系统的谱分析
项目编号: No.11301304
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 任国静
作者单位: 山东财经大学
项目金额: 22万元
中文摘要: 本项目拟研究奇异离散线性哈密顿系统谱的定量分析,主要包括离散线性哈密顿系统正负亏指数的取值范围、亏指数的判定、亏指数的稳定性、以及谱的不变性等。希尔伯特空间中的自伴算子的谱理论和对称算子的自伴扩张已经有了系统地研究,并广泛地应用到微分算子中。随着信息技术的飞速发展和计算机的广泛应用,出现了大量的差分系统。差分系统与其所对应的微分系统有很多相似之处,但也有诸多不同。最近,我们发现即使确定性条件成立,由离散线性哈密顿系统生成的最小算子也可以是不稠定的和多值的。因此,自伴算子的谱理论不适用于研究差分算子谱的性质。本项目拟建立不稠定的厄米特子空间的谱理论,并利用此理论定义和研究离散线性哈密顿系统的亏指数和谱。这些问题的解决是研究对称差分系统以及时标上的动力系统的自伴扩张和谱分布的理论前提和基础。本项目的研究重视新方法的建立,拟完成的成果对量子力学、生物工程等许多学科的研究有着重要的理论意义。
中文关键词: 离散哈密顿系统;子空间;谱;亏指数;扰动
英文摘要: This project is concerned with the qualitative spectral analysis of singular discrete linear Hamiltonian systems, which contains mainly the value range of the positive and negative deficiency indices, the criterion of the deficiency index,the stability of the deficiency index, and the invariability of spectrum of discrete linear Hamiltonian systems. The spectral theory of self-adjoint operators in Hilbert spaces and the extensions of symmetric operators have been sufficiency researched, and it has been widely applied to differential opeators. With the reapid development of information technology and wide application of computer, there appear a lot of difference systems. There are many differences between differential systems and difference systems, as well as a lot of similarity. Recently, we found that the minimal operator generated by discrete linear Hamiltonian systems may be non-densely defined and multi-valued, even if the corresponding definiteness condition is satisfied. Hence, the spectral theory of self-adjoint operators in Hilbert spaces is not suitable to exploring the spcetrum of difference operaors.In this project we will estabilsh the spectral theory of no-densely defiend Hermite subspaces, and then define and invesgate the deficiency index and spectrum by using this theory. The solution of these
英文关键词: Discrete Hamiltonian system;Subspace;Spectrum;Deficiency index;Pertubation