We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For both tasks, we test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations. Our results show that stochastic ensembles provide more accurate posterior estimates than other popular baselines for Bayesian inference.


翻译:我们介绍了一种使用随机神经网络集成逼近贝叶斯后验概率的方法,结合了Dropout等随机方法和深度集成方法。我们将随机集成网络作为分布族来进行训练,利用变分推断来逼近贝叶斯后验概率。我们基于Monte Carlo dropout、DropConnect以及一种新的非参数dropout版本实现了随机集成,并在玩具问题和CIFAR图像分类上进行了评估。对于这两个任务,我们直接根据汉密尔顿蒙特卡罗模拟测试了后验概率的质量。我们的结果表明,与其他流行的贝叶斯推理基线相比,随机集成提供了更准确的后验概率估计。

0
下载
关闭预览

相关内容

在统计中,后验概率表示假设被赋予特定数据集的可能性。在条件概率方面,我们可以用以下方式表示它:后验= P(H | D),其中D =数据,H =假设
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
159+阅读 · 2020年1月16日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月21日
VIP会员
相关基金
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员