项目名称: 基于核函数的正则化学习算法:逼近性及稀疏性研究

项目编号: No.11201079

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 石磊

作者单位: 复旦大学

项目金额: 22万元

中文摘要: 学习理论开始于经典的统计学习理论和支持向量机的研究,其目的是借助随机样本重构潜在的函数关系或者函数特征,进而刻画数据产生的机制或者数据的组织结构。基于核函数的正则化算法,因为良好的逼近性质和可执行性,是学习理论中研究最广泛的一类算法。本项目的核心内容是利用逼近论的方法对基于核函数构造的样本依赖假设空间中的一些正则化算法的渐近性质进行深入的理论研究,包括算法的逼近性质和解的稀疏表示。具体来说,本项目将研究L1系数正则化算法和基于经验特征的正则化算法。逼近论,小波分析中的思想将被用于算法的设计和理论分析。本项目的研究有助于提高人们对现有算法的理解,并为设计新的学习算法提供线索。

中文关键词: 学习理论;函数逼近论;正则化核方法;;

英文摘要: Learning theory began with work on statistical learning theory and support vector machines. It aims at reconstructing the potential functional relations and features from random samples, and then characterizing how the data are generated and organized. Due to the nice approximation properties and effective performances, kernel-based regularization schemes have been investigatied exten- sively in learning theory. This project mainly studies the asymptotic performances of some regularization schemes in data dependent hypothesis spaces constructed by kernel functions, including the approximation properties of the algorithms and the sparse representations of the output solutions. Specifically, we will investigate coefficient-based L1 regularization schemes and regularization schemes based on empirical features. Ideas from approximation theory and wavelet analysis are taken for the design and theoretical analysis of the algorithms. By the study of this project, we shall have better understandings of existing algorithms and explore new learning schemes.

英文关键词: learning theory;approximation theory;regularized kernel methods;;

成为VIP会员查看完整内容
3

相关内容

【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
19+阅读 · 2021年11月7日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
52+阅读 · 2021年8月29日
专知会员服务
143+阅读 · 2021年8月12日
专知会员服务
24+阅读 · 2021年7月22日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
周志华老师《机器学习》西瓜书学习笔记
专知
30+阅读 · 2019年8月11日
用深度学习揭示数据的因果关系
专知
28+阅读 · 2019年5月18日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
Meta-Learning 元学习:学会快速学习
GAN生成式对抗网络
20+阅读 · 2018年12月8日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
基于信息理论的机器学习
专知
21+阅读 · 2017年11月23日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
23+阅读 · 2018年8月3日
小贴士
相关主题
相关VIP内容
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
19+阅读 · 2021年11月7日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
52+阅读 · 2021年8月29日
专知会员服务
143+阅读 · 2021年8月12日
专知会员服务
24+阅读 · 2021年7月22日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
相关资讯
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
周志华老师《机器学习》西瓜书学习笔记
专知
30+阅读 · 2019年8月11日
用深度学习揭示数据的因果关系
专知
28+阅读 · 2019年5月18日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
Meta-Learning 元学习:学会快速学习
GAN生成式对抗网络
20+阅读 · 2018年12月8日
一文读懂贝叶斯分类算法(附学习资源)
大数据文摘
12+阅读 · 2017年12月14日
基于信息理论的机器学习
专知
21+阅读 · 2017年11月23日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
相关基金
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员