Balancing is a fundamental need for legged robots due to their unstable floating-base nature. Balance control has been thoroughly studied for simple models such as the linear inverted pendulum thanks to the concept of the instantaneous capture point (ICP), yet the constant center of mass height assumption limits the application. This paper explores balancing of the variable-height inverted pendulum (VHIP) model by introducing the \emph{instantaneous capture input} (ICI), an extension of the ICP based on its key properties. Namely, the ICI can be computed as a function of the state, and when this function is used as the control policy, the ICI is rendered stationary and the system will eventually come to a stop. This characterization induces an analytical region of capturable states for the VHIP, which can be used to conceptually guide where to step. To further address state and control constraints during recovery, we present and theoretically analyze an explicit ICI-based controller with online optimal feedback gains. Simulations demonstrate the validity of our controller for capturability maintenance compared to an approach based on the divergent component of motion.


翻译:由于悬浮基质的不稳定性,平衡是腿状机器人的基本需要。由于瞬时捕捉点的概念,对线性倒置钟盘等简单模型的平衡控制已经进行了彻底研究,但质量高度的常数中心假设限制了应用。本文探讨平衡可变高度倒置钟盘(VHIP)模型,引入了 emph{intantaneous 抓取输入 (ICI) (VHIP),这是比较方案基于关键特性的延伸。 也就是说, ICI 可以作为状态的函数来计算, 当该功能被用作控制政策时, ICI 变成静止的, 系统最终会停止 。 这个特征将引出一个分析性区域, 分析VHIP的可控制状态, 用于概念性指导前进的方向。 为了进一步解决恢复过程中的状态和控制限制, 我们提出并理论上分析一个明确的 ICI 控制器, 其在线最佳反馈收益。 模拟显示我们的控制器对可控性维护能力的有效性, 与基于不同运动部分的方法相比, 。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
41+阅读 · 2020年3月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员