Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available: https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TRA.


翻译:成功的量化投资通常依赖于对未来股票价格变化的准确预测。最近,基于机器学习的解决方案显示它们有能力提供更准确的股票预测,并成为现代量化投资系统中不可或缺的组成部分。然而,现有方法背后的假设与股票市场中存在不同的交易模式不一致,这不可避免地限制了它们实现更好的股票预测绩效的能力。在本文件中,我们提议建立一个新颖的结构,即“时间路由调适(TRA)”,以赋予现有股票预测模型以模拟多种股票交易模式的能力。基本上,TRA是一个轻量级模块,由一套独立的预测器组成,用于学习多种模式,并成为向不同预测者发送样本的路由器。然而,由于缺乏明确的模式识别器,因此很难培训一个有效的基于交易模式的模式。为了应对这一挑战,我们进一步设计了一个基于最佳运输(Ot)的学习算法,以获得预测或分配的最佳样本,并通过一个辅助性损失术语有效地优化路由这种分配的路由器。在现实世界股票排名上进行实验,以学习多种模式以及将样本发送给不同预测的路径。 与目前使用的Slimbleg-al3/real-liglement数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库相比, 和目前使用的系统数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库数据库可以改进。

8
下载
关闭预览

相关内容

【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
VIP会员
相关VIP内容
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员