This paper addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated $n$-node directed network and a set of $k$ commodities, with source-destination pairs $(s_i,t_i)$ and demands $d_i> 0$, admit and route the largest possible number of commodities -- i.e., the maximum {\em throughput} -- to satisfy their demands. The main contributions of this paper are two-fold: First, we present a bi-criteria approximation algorithm for this all-or-nothing multicommodity flow (ANF) problem. Our algorithm is the first to achieve a {\em constant approximation of the maximum throughput} with an {\em edge capacity violation ratio that is at most logarithmic in $n$}, with high probability. Our approach is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows our approach to work for {\em arbitrary directed edge-capacitated graphs}, unlike most of the prior work on the ANF problem. Our algorithm also works if we consider the weighted throughput, where the benefit gained by fully satisfying the demand for commodity $i$ is determined by a given weight $w_i>0$. Second, we present a derandomization of our algorithm that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, we show how our framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. One important aspect of our randomized and derandomized algorithms is their {\em simplicity}, which lends to efficient implementations in practice.
翻译:本文涉及以下根本性的最大吞吐路由问题: 鉴于一个任意的边缘能力强的以美元计价的多通货流(ANF)网络和一套以美元计价的商品,其来源-目的地对配方(s_i,t_i)美元,并需要$_i > 0美元,接受和选择尽可能多的商品 -- -- 即最大流经量] -- -- 以满足其需求。本文的主要贡献是双重的:首先,我们为这一全或全无的多通货流(ANF)问题提出了一个双标准近似算法。我们的算法是第一个实现最大吞吐吐量最大通货量对量对量对量对量对数对数对数对数对数的对数对数对数对数对数对数对数对数的对数对数对数的对数。 我们的方法是基于一个随机的圆环的版本,而不是通过非扭曲的路径对每种商品的对数:这使我们可以调整方法用于任意调整的边缘流流流通量对数的图表,我们的算算法是第一个实现最大通货量对量对量对量的最大量对量对量对量对量的对量的对量的对数 。如果我们之前的计算,如果我们的对量对量对量对量对数的对数的对数的对数的对数的对数的对数的计算则是, 的计算,如果我们之前的计算是完全的对数对数对数对数的计算能力对数是完全的对数的对数的对数的对数的计算,如果通过一个对数的对数的对数的对数的对数的对数的计算,如果我们的对数的对数的计算,如果我们的计算, 的计算, 的计算,我们所的计算,我们所的计算,我们的计算是完全的对数的对数的计算, 的计算,我们所的计算,我们的计算,我们所的计算是完全的对数的计算, 的计算, 的计算, 的计算,我们所的计算是的计算的计算, 的计算是算的计算的计算的计算的计算,我们的计算的计算的计算是算的计算,我们的对数税对数税对数的对数的