When numerical solution of elliptic and parabolic partial differential equations is required to be highly accurate in space, the discrete problem usually takes the form of large-scale and sparse linear systems. In this work, as an alternative, for spatial discretization we provide a Matrix-Oriented formulation of the classical Finite Element Method, called MO-FEM, of arbitrary order $k\in\mathbb{N}$. On structured 2D domains (e.g. squares or rectangles) the discrete problem is then reformulated as a Sylvester matrix equation, that we solve by the reduced approach in the associated spectral space. On a quite general class of domains, namely normal domains, and even on special surfaces, the MO-FEM yields a multiterm Sylvester matrix equation where the additional terms account for the geometric contribution of the domain shape. In particular, we obtain a sequence of these equations after time discretization of parabolic problems by the IMEX Euler method. We apply the matrix-oriented form of the Preconditioned Conjugate Gradient (MO-PCG) method to solve each multiterm Sylvester equation for MO-FEM of degree $k=1,\dots,4$ and for the lumped $\mathbb{P}_1$ case. We choose a matrix-oriented preconditioner with a single-term form that captures the spectral properties of the whole multiterm Sylvester operator. For several numerical examples, we show a gain in computational time and memory occupation wrt the classical vector approach solving large sparse linear systems by a direct method or by the vector PCG with same preconditioning. As an application, we show the advantages of the MO-FEM-PCG to approximate Turing patterns with high spatial resolution in a reaction-diffusion PDE system for battery modeling.


翻译:当需要对椭圆和parbal 部分偏差方程式的数值解决方案在空间中非常精确时,离散问题通常采取大规模和分散线性系统的形式。在这项工作中,作为空间离散的替代方法,我们提供了古典Finite Element 方法的矩阵-方向配方,称为 MO-FEM,任意顺序为$k\in\mathbb{N}。在结构化的 2D 域(如正方或矩形)之后,离散问题随后被重塑为Sylveter 矩阵方程式,在相关光谱空间中,我们通过减少的方法加以解决。在一个非常普通的域类中,即普通域,甚至在特殊表面上,我们提供一种以矩阵为主的矩阵方格配方,在IMEX 模型解析介质方法中,我们用一个以时间分解的方式,我们采用预设的矩形矩形变式格式(MO-PC+P) 直径直径直径直径的直径直径直径直径直径直径直径直径直径直径直径方方方方方方方方阵阵阵式,在S- AS- MA- 平基平基平基平基平基平基平面平面平方阵列平基平面平面平方阵列方阵列平方法上,在S- 平基平基平基平基平基平基平基平方法上,用一个直向式平基平方法显示一个直径平基平基平方法,用一个直径直径直径基平基平基平基平基平基平基平基平基平方法,在S-平基平基平基平基平基平基平方法的直方法,用一个直方形平方法,用一个平基平基平方方方方方方方方方方法,在SMM1,在S-平基平方法上显示一个直方法,在SM1。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
43+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员