A streaming algorithm is adversarially robust if it is guaranteed to perform correctly even in the presence of an adaptive adversary. Recently, several sophisticated frameworks for robustification of classical streaming algorithms have been developed. One of the main open questions in this area is whether efficient adversarially robust algorithms exist for moment estimation problems under the turnstile streaming model, where both insertions and deletions are allowed. So far, the best known space complexity for streams of length $m$, achieved using differential privacy (DP) based techniques, is of order $\tilde{O}(m^{1/2})$ for computing a constant-factor approximation with high constant probability. In this work, we propose a new simple approach to tracking moments by alternating between two different regimes: a sparse regime, in which we can explicitly maintain the current frequency vector and use standard sparse recovery techniques, and a dense regime, in which we make use of existing DP-based robustification frameworks. The results obtained using our technique break the previous $m^{1/2}$ barrier for any fixed $p$. More specifically, our space complexity for $F_2$-estimation is $\tilde{O}(m^{2/5})$ and for $F_0$-estimation, i.e., counting the number of distinct elements, it is $\tilde O(m^{1/3})$. All existing robustness frameworks have their space complexity depend multiplicatively on a parameter $\lambda$ called the \emph{flip number} of the streaming problem, where $\lambda = m$ in turnstile moment estimation. The best known dependence in these frameworks (for constant factor approximation) is of order $\tilde{O}(\lambda^{1/2})$, and it is known to be tight for certain problems. Again, our approach breaks this barrier, achieving a dependence of order $\tilde{O}(\lambda^{1/2 - c(p)})$ for $F_p$-estimation, where $c(p) > 0$ depends only on $p$.


翻译:如果保证在适应性对手面前能够正确运行的话, 流式算法将具有对抗性强。 最近, 已经开发了数个精密的框架, 用于对古典流算法进行稳健化。 这个区域的主要开放问题之一是在旋转流模式下是否存在高效的对抗性强算法, 在旋转流模式下, 既允许插入, 也允许删除。 到目前为止, 长度流的最大已知空间复杂性, 使用差异隐私( DP) 基础技术实现的 。 以 $( delial) 实现的 $( dedede{ O} (m) (美元) 。 用来计算常态流动算的常态近似近似值。 在这项工作中, 我们用 $( t) $( t) 来计算一个已知的 $( f) 美元 。 (dil) 美元 、 美元 美元 的常态调和 美元 美元调和 美元调和 美元 美元调 美元调 。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2021年9月3日
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员