Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over subsets of data, {\em i.e.} minibatches. While computationally appealing, we highlight in this paper some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behavior. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.
翻译:最佳运输距离在机器学习中发现了许多应用,以了解其比较非参数概率分布的能力。然而,它们的算法复杂性通常阻止其在大规模数据集中直接使用。在缓解这一问题的可能战略中,实践者可以依赖计算数据子集之间的距离估计值。在计算上具有吸引力的同时,我们在本文中强调这一战略的一些局限性,认为它可能导致不理想的平滑效果。作为一种替代办法,我们建议同样的小型批量战略加上不平衡的最佳运输方式可以产生更强有力的行为。我们讨论了相关的理论属性,例如公正的估计器、梯度的存在和集中界限。我们的实验研究表明,在与领域适应相关的挑战性问题上,使用不平衡的最佳运输方式可以带来更好的结果,与最近的基线相竞争或超过最近的基线。