Reconstructing 3D non-watertight mesh from an unoriented point cloud is an unexplored area in computer vision and computer graphics. In this project, we tried to tackle this problem by extending the learning-based watertight mesh reconstruction pipeline presented in the paper 'Shape as Points'. The core of our approach is to cast the problem as a semantic segmentation problem that identifies the region in the 3D volume where the mesh surface lies and extracts the surfaces from the detected regions. Our approach achieves compelling results compared to the baseline techniques.
翻译:从非定向点云层重建3D非水密网块是计算机视觉和计算机图形中尚未探索的领域。 在这个项目中,我们试图通过扩大“作为点”的论文中提出的基于学习的、水密网块重建管道来解决这一问题。 我们的方法的核心是将问题作为一个语义分解问题,在3D卷中确定3D卷中的区域,网块表面躺在那里,从所探测到的区域提取表面。我们的方法与基线技术相比,取得了令人信服的结果。