项目名称: 基于过渡金属氧化物纳米片的半导体材料组装及构效关系研究

项目编号: No.21271008

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 何杰

作者单位: 安徽理工大学

项目金额: 75万元

中文摘要: 由低维尺度单元组装的功能材料与器件因其独特的物理化学性质已成为近年来研究的热点之一,但"组装机理"和"构效关系"研究相对薄弱。本研究采用铌(钛)基氧化物纳米片与过渡金属氧化物或复合氧化物纳米微晶组装体系为研究对象,以构建复合功能材料为目标,复合过程中物理化学变化为研究重点,吸附和选择性光催化氧化有机硫化物为性能评价手段,研究纳米无机复合催化材料组装机制与构效关系。通过制备规整、稳定的铌(钛)基氧化物纳米片,分散具有特定功能的过渡金属氧化物或复合氧化物,如Fe2O3和ZnO纳米微晶,研究分散物种与纳米片作用方式、分散与聚集机理。通过XRD、TEM、AFM、LRS、UV-vis DRS和PLS等表征技术以及光催化活性评价,对复合催化材料结构、光电化学特征以及结构协同与功能耦合效应进行表征,建立过渡金属氧化物在氧化物纳米片载体上的分散模型与组装机制,发展复合催化功能材料的设计理论与可控组装方法。

中文关键词: 纳米片;纳米粒子;复合材料构建;结构表征;协同效应

英文摘要: Composite functional materials and devices, which are built through assembling of low dimension scale-units, have become one of hot research interests due to their unique physicochemical properties in recent years. However, only a few studies have been focused on their assembly mechanisn and structure- activity relationship. In this project, Niobia (or Titania)-based oxide nanosheets and transition metal oxide or their composite nanocrystals are used as the object to fabricate the composite materials. The physicochemical changes in the assembly process are specially focused, and the adsorption feature and the photocatalytic activity for selective oxidation of sulfides are used as evaluation reactions. The assembled mechanism and the structure-activity relationship will be explored. By regular and stable niobia (or titania)-based nanosheets are prepared by their layered precursors respectively, dispersing transition metal oxide or their composite nanocrystals with specific properties, which are semiconductor with special adsorption for sulfides such as Fe2O3 and ZnO, the interactional modes between nanosheet and nanocrytal, dispersion and aggregation mechanism of oxide species on nanosheets are discussed. The structure, the photoelectrochemical characterization, structural synergy and functional coupling for comp

英文关键词: Nanosheets;Nanoparticles;Building of the composite materials;structural characterization;synergistic effect

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
84+阅读 · 2021年6月20日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
阿里「猫享」,正式上线
36氪
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
相关资讯
阿里「猫享」,正式上线
36氪
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员