Task automation of surgical robot has the potentials to improve surgical efficiency. Recent reinforcement learning (RL) based approaches provide scalable solutions to surgical automation, but typically require extensive data collection to solve a task if no prior knowledge is given. This issue is known as the exploration challenge, which can be alleviated by providing expert demonstrations to an RL agent. Yet, how to make effective use of demonstration data to improve exploration efficiency still remains an open challenge. In this work, we introduce Demonstration-guided EXploration (DEX), an efficient reinforcement learning algorithm that aims to overcome the exploration problem with expert demonstrations for surgical automation. To effectively exploit demonstrations, our method estimates expert-like behaviors with higher values to facilitate productive interactions, and adopts non-parametric regression to enable such guidance at states unobserved in demonstration data. Extensive experiments on $10$ surgical manipulation tasks from SurRoL, a comprehensive surgical simulation platform, demonstrate significant improvements in the exploration efficiency and task success rates of our method. Moreover, we also deploy the learned policies to the da Vinci Research Kit (dVRK) platform to show the effectiveness on the real robot. Code is available at https://github.com/med-air/DEX.


翻译:外科机器人的任务自动化具有提高外科手术效率的潜力。最近的强化学习(RL)方法为外科自动化提供了可扩展的解决方案,但通常需要广泛收集数据,以便在没有事先知识的情况下解决一项任务。这个问题被称为探索挑战,通过向外科机器人提供专家演示可以缓解这一挑战。然而,如何有效利用演示数据提高探索效率仍是一个尚未解决的挑战。在这项工作中,我们引入了演示引导推算法(DEX),这是一种高效强化学习算法,目的是通过手术自动化专家演示克服探索问题。为了有效地利用演示,我们的方法估计具有更高价值的专家类似行为,以促进生产性互动,并采用非参数回归法,以便在演示数据中未观测到的州提供这种指导。关于SurRoL(一个综合外科模拟平台)的1万美元外科操作任务的广泛实验,显示了我们方法的探索效率和任务成功率的显著提高。此外,我们还在达芬奇研究工具包(dVRK)平台上应用了学习到的政策,以显示真实机器人的效能。 https://github. EX.m。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员