Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we bridge orientation and reconstruction in implicit space and propose a novel approach to orient point clouds by incorporating isovalue constraints to the Poisson equation. Feeding a well-oriented point cloud into a reconstruction approach, the indicator function values of the sample points should be close to the isovalue. Based on this observation and the Poisson equation, we propose an optimization formulation that combines isovalue constraints with local consistency requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally consistent orientation. Owing to the sparsity of the linear system, an average laptop can be used to run our method within reasonable time. Experiments show that our method can achieve high performance in non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components, and nested surfaces.
翻译:定向正常是基于点云(如Poisson表面重建)的许多几何算法的常见先决条件,例如 Poisson 地表重建。 但是,获得一致方向并非微不足道。 在这项工作中,我们在隐蔽空间中连接方向和重建,并提议对圆点云采取新的方法,将等值限制纳入 Poisson 方程式。在重建方法中为方向明确的点云喂食,抽样点的指标函数值应接近于等值。根据观察和Poisson方程式,我们建议一种优化配方,将数值限制与正常的本地一致性要求结合起来。我们同时优化正常和隐含功能,并解决全球一致方向。由于线性系统的宽度,可以使用平均笔记本电脑在合理时间内操作我们的方法。实验显示,我们的方法可以在非单形和噪音数据中取得高性能,并管理不同的取样密度、工艺品、多个连接组件和嵌巢表。