In a fissile material, the inherent multiplicity of neutrons born through induced fissions leads to correlations in their detection statistics. The correlations between neutrons can be used to trace back some characteristics of the fissile material. This technique known as neutron noise analysis has applications in nuclear safeguards or waste identification. It provides a non-destructive examination method for an unknown fissile material. This is an example of an inverse problem where the cause is inferred from observations of the consequences. However, neutron correlation measurements are often noisy because of the stochastic nature of the underlying processes. This makes the resolution of the inverse problem more complex since the measurements are strongly dependent on the material characteristics. A minor change in the material properties can lead to very different outputs. Such an inverse problem is said to be ill-posed. For an ill-posed inverse problem the inverse uncertainty quantification is crucial. Indeed, seemingly low noise in the data can lead to strong uncertainties in the estimation of the material properties. Moreover, the analytical framework commonly used to describe neutron correlations relies on strong physical assumptions and is thus inherently biased. This paper addresses dual goals. Firstly, surrogate models are used to improve neutron correlations predictions and quantify the errors on those predictions. Then, the inverse uncertainty quantification is performed to include the impact of measurement error alongside the residual model bias.


翻译:在裂变材料中,通过诱导裂变产生的中子的内在多样性导致其探测统计的关联性。中子之间的关联性可以用来追溯裂变材料的某些特性。这种被称为中子噪音分析的技术在核保障或废物识别中应用了这种技术。它为未知裂变材料提供了一个非破坏性的检查方法。这是一个反向问题的例子,其原因是从对后果的观察中推断出其原因。然而,中子相关性的测量由于基本过程的随机性质而往往很吵闹。这使得反向问题的解决更加复杂,因为测量在很大程度上取决于材料特性。材料特性的微小变化可以导致非常不同的产出。据说,这种反向问题并不适用于核保障或废物识别。对于反向不确定性的量化是一个非常关键的问题。事实上,数据中看起来低的噪音可能会导致对材料特性的模型估算产生很大的不确定性。此外,通常用来描述中子相关性的分析框架依赖于很强的物理假设,因此,使反向问题的解决更为复杂,因为测量结果在很大程度上取决于物质特性。这种测量方法的细微变化可导致产生非常不同的输出结果。这一结果据说是用来预测的双重的,随后的精确度模型是用来预测结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员