We consider space-time tracking type distributed optimal control problems for the wave equation in the space-time domain $Q:= \Omega \times (0,T) \subset {\mathbb{R}}^{n+1}$, where the control is assumed to be in the energy space $[H_{0;,0}^{1,1}(Q)]^*$, rather than in $L^2(Q)$ which is more common. While the latter ensures a unique state in the Sobolev space $H^{1,1}_{0;0,}(Q)$, this does not define a solution isomorphism. Hence we use an appropriate state space $X$ such that the wave operator becomes an isomorphism from $X$ onto $[H_{0;,0}^{1,1}(Q)]^*$. Using space-time finite element spaces of piecewise linear continuous basis functions on completely unstructured but shape regular simplicial meshes, we derive a priori estimates for the error $\|\widetilde{u}_{\varrho h}-\overline{u}\|_{L^2(Q)}$ between the computed space-time finite element solution $\widetilde{u}_{\varrho h}$ and the target function $\overline{u}$ with respect to the regularization parameter $\varrho$, and the space-time finite element mesh-size $h$, depending on the regularity of the desired state $\overline{u}$. These estimates lead to the optimal choice $\varrho=h^2$ in order to define the regularization parameter $\varrho$ for a given space-time finite element mesh size $h$, or to determine the required mesh size $h$ when $\varrho$ is a given constant representing the costs of the control. The theoretical results will be supported by numerical examples with targets of different regularities, including discontinuous targets. Furthermore, an adaptive space-time finite element scheme is proposed and numerically analyzed.
翻译:我们考虑在时空域 $Q: =\ Omega\ times (0,T)\ subset\ subthb{R\\ n+1}$, 假设控制在能量空间 $[H ⁇ 0;, 0 ⁇ 1,1}(Q)] 美元, 而不是更常见的$L22(Q) 美元, 而后者确保 Sobolev 空间中的一种独特状态 $H2, 1 ⁇ 0; 0} (Q), 这不能定义一个公式。 因此, 我们使用适当的状态空间 $( 0,T)\ subsetset sets $xxxx美元; 0\\ 1, 1}(Q) $。 使用完全不结构化的平线性功能的时空定元素空间内位空间定值空间定值空间定值空间定值值值值值值值值值 $美元($美元) 。