Self-Organizing Maps (SOMs, Kohonen networks) belong to neural network models of the unsupervised class. In this paper, we present the generalized setup for non-Euclidean SOMs. Most data analysts take it for granted to use some subregions of a flat space as their data model; however, by the assumption that the underlying geometry is non-Euclidean we obtain a new degree of freedom for the techniques that translate the similarities into spatial neighborhood relationships. We improve the traditional SOM algorithm by introducing topology-related extensions. Our proposition can be successfully applied to dimension reduction, clustering or finding similarities in big data (both hierarchical and non-hierarchical).
翻译:自制地图(SOMS、Kokoonen网络)属于不受监督的阶级神经网络模型(SOMs、Kohoonen网络) 。 在本文中,我们介绍了非欧洲人SOMs的通用结构。 多数数据分析家认为,使用一个平板空间的某个分区作为数据模型是理所当然的; 但是,假设基础几何是非欧洲人,我们获得了将相似性转化为空间邻里关系的新技术的新自由度。 我们通过引入与地形有关的扩展来改进传统的SOM算法。 我们的建议可以成功地应用于尺寸的减少、组合或大数据(等级和非等级)的相似性。