End-to-end learning of dynamical systems with black-box models, such as neural ordinary differential equations (ODEs), provides a flexible framework for learning dynamics from data without prescribing a mathematical model for the dynamics. Unfortunately, this flexibility comes at the cost of understanding the dynamical system, for which ODEs are used ubiquitously. Further, experimental data are collected under various conditions (inputs), such as treatments, or grouped in some way, such as part of sub-populations. Understanding the effects of these system inputs on system outputs is crucial to have any meaningful model of a dynamical system. To that end, we propose a structured latent ODE model that explicitly captures system input variations within its latent representation. Building on a static latent variable specification, our model learns (independent) stochastic factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space. This approach provides actionable modeling through the controlled generation of time-series data for novel input combinations (or perturbations). Additionally, we propose a flexible approach for quantifying uncertainties, leveraging a quantile regression formulation. Results on challenging biological datasets show consistent improvements over competitive baselines in the controlled generation of observational data and inference of biologically meaningful system inputs.
翻译:以黑箱模型(如神经普通差异方程式(ODEs)等)进行动态系统的端到端学习,为从数据中学习动态提供了灵活的框架,而没有为动态提供数学模型。不幸的是,这种灵活性是以理解动态系统为代价的,对动态系统无处不在地使用ODEs。此外,实验数据是在各种条件(投入)下收集的,如治疗,或以某种方式分组,如子群落的一部分。了解这些系统投入对系统产出的影响,对于建立任何有意义的动态系统模型至关重要。为此,我们提议了一个结构化的深层ODE模型,明确捕捉到系统在其潜在代表范围内的输入变量。在静态潜在变量规范的基础上,我们的模型(独立)学习了系统每项投入的变异性因素,从而将系统投入在潜伏空间中的影响分开。这一方法通过控制地生成时间序列数据,为新的输入组合(或扰动)提供可操作的模型。此外,我们提议采用灵活的方法,量化不确定性,利用可控生物回归数据的重要数据基准,在生物回归的生成中显示具有挑战性的数据。