An anticode ${\bf C} \subset {\bf F}_q^n$ with the diameter $\delta$ is a code in ${\bf F}_q^n$ such that the distance between any two distinct codewords in ${\bf C}$ is at most $\delta$. The famous Erd\"{o}s-Kleitman bound for a binary anticode ${\bf C}$ of the length $n$ and the diameter $\delta$ asserts that $$|{\bf C}| \leq \Sigma_{i=0}^{\frac{\delta}{2}} \displaystyle{n \choose i}.$$ In this paper, we give an antiGriesmer bound for $q$-ary projective linear anticodes, which is stronger than the above Erd\"{o}s-Kleitman bound for binary anticodes. The antiGriesmer bound is a lower bound on diameters of projective linear anticodes. From some known projective linear anticodes, we construct some linear codes with optimal or near optimal minimum distances. A complementary theorem constructing infinitely many new projective linear $(t+1)$-weight code from a known $t$-weight linear code is presented. Then many new optimal or almost optimal few-weight linear codes are given and their weight distributions are determined. As a by-product, we also construct several infinite families of three-weight binary linear codes, which lead to $l$-strongly regular graphs for each odd integer $l \geq 3$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员