In this article, we propose a linearized fully-discrete scheme for solving a time fractional nonlocal diffusion-wave equation of Kirchhoff type. The scheme is established by using the finite element method in space and the $L1$ scheme in time. We derive the $\alpha$-robust \textit{a priori} bound and \textit{a priori} error estimate for the fully-discrete solution in $L^{\infty}\big(H^1_0(\Omega)\big)$ norm, where $\alpha \in (1,2)$ is the order of time fractional derivative. Finally, we perform some numerical experiments to verify the theoretical results.
翻译:在本篇文章中,我们提出了一个解决Kirchhoff型非局部时间分数扩散波方程式的线性全分解计划。这个计划是通过使用空间的有限元素法和1美元的及时计划确定的。我们从中得出了 $\ alpha$- robust \ textit{ a refri} 绑定和\ textit{ a riti} 错误估计,用$L ⁇ infty ⁇ big (H ⁇ 1_0(Omega)\ big) 规范中完全分解的解决方案(H ⁇ 1_0(Omega)\ big) 来验证理论结果。