This paper investigates, a new class of fractional order Runge-Kutta (FORK) methods for numerical approximation to the solution of fractional differential equations (FDEs). By using the Caputo generalized Taylor formula and the total differential for Caputo fractional derivative, we construct explicit and implicit FORK methods, as the well-known Runge-Kutta schemes for ordinary differential equations. In the proposed method, due to the dependence of fractional derivatives to a fixed base point $t_0,$ we had to modify the right-hand side of the given equation in all steps of the FORK methods. Some coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the proposed method is also discussed. Numerical experiments clarify the effectiveness and robustness of the method.


翻译:本文调查了一类新的分序龙格-库塔(FORK)方法,用于解决分差方程(FDEs)的数值近似值。 通过使用卡普托通用泰勒公式和卡普托分数衍生物总差,我们构建了明确和隐含的FORK方法,作为众所周知的龙格-库塔普通差分方程计划。在拟议方法中,由于分数衍生物依赖固定基点$t_0,我们不得不在FORK方法的所有步骤中修改给定方程的右侧面。提出了明确和隐含FORK方案的一些系数。还讨论了对拟议方法的趋同分析。数字实验澄清了方法的有效性和稳健性。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员