Stochastic gradient descent-ascent (SGDA) is one of the main workhorses for solving finite-sum minimax optimization problems. Most practical implementations of SGDA randomly reshuffle components and sequentially use them (i.e., without-replacement sampling); however, there are few theoretical results on this approach for minimax algorithms, especially outside the easier-to-analyze (strongly-)monotone setups. To narrow this gap, we study the convergence bounds of SGDA with random reshuffling (SGDA-RR) for smooth nonconvex-nonconcave objectives with Polyak-{\L}ojasiewicz (P{\L}) geometry. We analyze both simultaneous and alternating SGDA-RR for nonconvex-P{\L} and primal-P{\L}-P{\L} objectives, and obtain convergence rates faster than with-replacement SGDA. Our rates extend to mini-batch SGDA-RR, recovering known rates for full-batch gradient descent-ascent (GDA). Lastly, we present a comprehensive lower bound for GDA with an arbitrary step-size ratio, which matches the full-batch upper bound for the primal-P{\L}-P{\L} case.
翻译:然而,对于微型算法,特别是在较容易分析(强力分析)摩托内设置之外,这种方法的理论结果很少。为了缩小这一差距,我们研究SGDA的趋同界限,随机调整SGDA-RR(SGDA-RR),以便以Polyak-L}ojasiewicz(PL})的几何测量法来顺利地实现非convex-nonconcave 目标。我们同时和交替地分析SGDA-RR(非convex-P=L})和初等-P=P=P=L}目标,并获得比取代SGDA更快的趋同率。我们研究SGDA-R(SGDA-RRR)的收缩放速率,以恢复全速取非convex-nconcavex-nconcave 目标的已知比率,以GDA-Lral-Sl imal 比例(GDA} 全面、目前GDA-L-ral-ral 比例的完整直截的GDA) 比例。