The paper discusses derivative-free optimization (DFO), which involves minimizing a function without access to gradients or directional derivatives, only function evaluations. Classical DFO methods, which mimic gradient-based methods, such as Nelder-Mead and direct search have limited scalability for high-dimensional problems. Zeroth-order methods have been gaining popularity due to the demands of large-scale machine learning applications, and the paper focuses on the selection of the step size $\alpha_k$ in these methods. The proposed approach, called Curvature-Aware Random Search (CARS), uses first- and second-order finite difference approximations to compute a candidate $\alpha_{+}$. We prove that for strongly convex objective functions, CARS converges linearly provided that the search direction is drawn from a distribution satisfying very mild conditions. We also present a Cubic Regularized variant of CARS, named CARS-CR, which converges in a rate of $\mathcal{O}(k^{-1})$ without the assumption of strong convexity. Numerical experiments show that CARS and CARS-CR match or exceed the state-of-the-arts on benchmark problem sets.


翻译:本文讨论无导数优化(DFO),其涉及在没有梯度或方向导数的情况下最小化函数,只有函数评估。类似于基于梯度的方法的经典DFO方法,如Nelder-Mead和直接搜索,对于高维问题的可扩展性有限。由于大规模机器学习应用的需求,零阶方法越来越受欢迎,本文重点关注这些方法中步长$\alpha_k$的选择。所提出的方法称为曲率感知随机搜索(CARS),使用一阶和二阶有限差分逼近来计算候选$\alpha_{+}$。我们证明,对于强凸目标函数,只要从一个满足非常温和条件的分布中抽取搜索方向,CARS就会线性收敛。我们还提出了CARS-CR的立方正则化变体,该变体无需假设强凸性即可以$\mathcal{O}(k^{-1})$的速度收敛。数值实验表明,CARS和CARS-CR与基准问题集的现有技术相当或超越了它们。

0
下载
关闭预览

相关内容

【CTH博士论文】基于强化学习的自动驾驶决策,149页pdf
专知会员服务
56+阅读 · 2023年2月18日
KDD 2022 | MolSearch: 基于搜索的多目标分子生成和性质优化
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
12+阅读 · 2021年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员