In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ and ${\cal O}(\log \varepsilon^{-1})$ for finding an $\varepsilon$-residual solution of an unconstrained convex and strongly convex optimization problem, respectively. We then consider constrained convex optimization with LLCG and propose an first-order proximal augmented Lagrangian method for solving it by applying one of our proposed APG methods to approximately solve a sequence of proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable termination criterion and enjoys an operation complexity of ${\cal O}(\varepsilon^{-1}\log \varepsilon^{-1})$ and ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ for finding an $\varepsilon$-KKT solution of a constrained convex and strongly convex optimization problem, respectively. All the proposed methods in this paper are parameter-free or almost parameter-free except that the knowledge on convexity parameter is required. In addition, preliminary numerical results are presented to demonstrate the performance of our proposed methods. To the best of our knowledge, no prior studies were conducted to investigate accelerated first-order methods with complexity guarantees for convex optimization with LLCG. All the complexity results obtained in this paper are new.


翻译:

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
69+阅读 · 2022年9月30日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
13+阅读 · 2021年10月12日
专知会员服务
32+阅读 · 2021年6月24日
专知会员服务
23+阅读 · 2021年6月22日
专知会员服务
51+阅读 · 2020年12月14日
已删除
将门创投
11+阅读 · 2019年7月4日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
69+阅读 · 2022年9月30日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
13+阅读 · 2021年10月12日
专知会员服务
32+阅读 · 2021年6月24日
专知会员服务
23+阅读 · 2021年6月22日
专知会员服务
51+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员