This paper proposes a novel deep generative model, called BSDE-Gen, which combines the flexibility of backward stochastic differential equations (BSDEs) with the power of deep neural networks for generating high-dimensional complex target data, particularly in the field of image generation. The incorporation of stochasticity and uncertainty in the generative modeling process makes BSDE-Gen an effective and natural approach for generating high-dimensional data. The paper provides a theoretical framework for BSDE-Gen, describes its model architecture, presents the maximum mean discrepancy (MMD) loss function used for training, and reports experimental results.
翻译:本文提出了一种称为BSDE-Gen的新型深度生成模型,它将反向随机微分方程(BSDEs)的灵活性与深度神经网络的强大能力相结合,用于生成高维复杂目标数据,特别是在图像生成领域。将随机性和不确定性融入到生成建模过程中,使得BSDE-Gen成为一种有效而自然的生成高维数据的方法。本文提供了BSDE-Gen的理论框架,详细描述了其模型架构,介绍了用于训练的最大平均差异(MMD)损失函数,并报告了实验结果。