项目名称: 多翅膀混沌吸引子建模、硬件实现及应用的研究

项目编号: No.60871025

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 禹思敏

作者单位: 广东工业大学

项目金额: 30万元

中文摘要: 1. 理论研究: 在理论研究方面,突破传统多涡卷混沌吸引子建模与研究方法局限性,在分段Lorenz系统中研究多翅膀混沌吸引子基础上,以偶对称多分段二次型函数族等一类新型非线性函数建模为切入点,提出在三阶二次型和分段线性型这两类广义Lorenz系统族中产生多翅膀和网格状多翅膀混沌吸引子的新方法。作为双翅膀混沌吸引子延伸与扩展,目标是建立一个新的多翅膀混沌吸引子体系,该体系包括Lorenz、Chen、Lu、Rucklidge、S-M、Sprott等多翅膀广义Lorenz系统族,多翅膀吸引子类型为8-10个、网格状多翅膀吸引子类型为2-4个。 2. 硬件实现与应用研究: 在硬件实现与应用研究方面,用混沌电路模块化设计产生多翅膀吸引子,用FPGA与DSP技术产生多翅膀混沌序列与实现保密通信。根据IEEE-754标准,研制多翅膀混沌序列产生、加密与解密专用FPGAIP核,建立并实现一种基于FPGA嵌入式技术的多翅膀混沌序列加密与解密的以太网传输混沌保密通信。

中文关键词: 多翅膀和网格多翅膀混沌吸引子;广义Lorenz系统族;多翅膀系统建模;混沌电路模块化设计及FPGA与DSP技术实现;混沌通信

英文摘要: 1. Theoretical research: In theoretical research, breaking through the limitation of traditional modeling and research methods for generating multi-scroll chaotic attractors, based on the study of multi-wing chaotic attractors from piecewise-linear Lorenz system, and taking the modeling of newly duality-symmetric multi-piecewise quadratic functions as the starting point, this project proposes a novel method for generating multi-wing and grid multi-wing chaotic attractors from both three dimensional quadratic and piecewise-linear generalized Lorenz system family. As an extension of dipterous chaotic attractors, the objective of this project is to establish a newly multi-wing generalized system family, which can generate both 8-10 types of multi-wing attractors and 2-4 types of grid multi-wing attractors. 2. Hardware implementation and application In hardware implementation and application, by means of module-based chaotic circuit design, FPGA and DSP-based techniques, multi-wing attractors and chaotic sequences can be generated, respectively, which is used to realize secure communications. According to IEEE-754 standard, based on our special developed FPGA IP kernel which can generate multi-wing chaotic sequences and realize data encryption and decryption, the Ethernet transmission system for chaotic secure communication can be further implemented via FPGA embedded technology.

英文关键词: multi-wing chaotic attractors; generalized Lorenz system; module-based chaotic circuit design; FPGA and DSP implementation; chaotic communicatoin

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
221+阅读 · 2022年4月19日
高级地图匹配算法:研究现状和趋势
专知会员服务
16+阅读 · 2021年10月28日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2021年5月24日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
Epic融资20亿,离元宇宙更进一步
CSDN
1+阅读 · 2022年4月14日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
221+阅读 · 2022年4月19日
高级地图匹配算法:研究现状和趋势
专知会员服务
16+阅读 · 2021年10月28日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2021年5月24日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员