Future quantum internet aims to enable quantum communication between arbitrary pairs of distant nodes through the sharing of end-to-end entanglement, a universal resource for many quantum applications. As in classical networks, quantum networks also have to resolve problems related to routing and satisfaction of service at a sufficient rate. We deal here with the problem of scheduling when multiple commodities must be served through a quantum network based on first generation quantum repeaters, or quantum switches. To this end, we introduce a novel discrete-time algebraic model for arbitrary network topology, including transmission and memory losses, and adapted to dynamic scheduling decisions. Our algebraic model allows the scheduler to use the storage of temporary intermediate links to optimize the performance, depending on the information availability, ranging from full global information for a centralized scheduler to partial local information for a distributed one. As an illustrative example, we compare a simple greedy scheduling policy with several Max-Weight inspired scheduling policies and illustrate the resulting achievable rate regions for two competing pairs of clients through a network.
翻译:未来量子互联网的目标是通过共享端到端的缠绕资源,使任意的远端节点对彼此之间能够进行量子通信,这是许多量子应用的普遍资源。 和古典网络一样,量子网络也必须解决与路线安排和服务满意度有关的问题。 我们在这里处理的是,在多种商品必须通过基于第一代量子中继器的量子网络或量子开关的量子网络提供服务时,必须安排时间的问题。 为此,我们为任意的网络地形,包括传输和记忆损失,引入了一种新的离散时间代数模型,并适应动态的时间安排决定。 我们的代数模型允许调度器使用临时中间链接来优化性能,这要取决于信息的可得性,从集中的调度器的全部全球信息到分布的局部本地信息。 举例来说,我们比较了简单贪婪的列表政策,用几个Max-Wight启发的列表政策,并展示通过网络为两个相互竞争的客户带来的可实现率区域。