This paper revisits the problem of designing online algorithms for self-adjusting linear networks which dynamically adapt to the traffic pattern they serve. We refer to the graph formed by the pairwise communication requests as the demand graph. Even though the line is a fundamental network topology, existing results only study linear demand graphs. In this work, we take a first step toward studying more general demand graphs. We present a self-adjusting algorithm that responds to the traffic pattern drawn from the n-ladder graph%, i.e., a $2 \times n$ grid. The resulting algorithm appears to have an optimal competitive ratio. As two additional side results, we get a generic algorithm for an arbitrary demand graph and an optimal algorithm for a cycle demand graph.
翻译:本文回顾了设计自我调整线性网络的在线算法的问题,这种算法动态地适应了它们所服务的交通模式。 我们把对称通信请求所形成的图表称为需求图。 尽管这条线是一个基本的网络地形图, 现有的结果只研究线性需求图。 在这项工作中, 我们迈出第一步研究更一般的需求图。 我们提出了一个自我调整算法, 响应从 n- ladder 图% 中提取的交通模式, 即2\ times n$ 电网。 结果的算法似乎具有最佳的竞争比率。 作为另外两个附加结果, 我们获得了任意需求图的通用算法, 以及循环需求图的最佳算法 。