Fair clustering enjoyed a surge of interest recently. One appealing way of integrating fairness aspects into classical clustering problems is by introducing multiple covering constraints. This is a natural generalization of the robust (or outlier) setting, which has been studied extensively and is amenable to a variety of classic algorithmic techniques. In contrast, for the case of multiple covering constraints (the so-called colorful setting), specialized techniques have only been developed recently for $k$-Center clustering variants, which is also the focus of this paper. While prior techniques assume covering constraints on the clients, they do not address additional constraints on the facilities, which has been extensively studied in non-colorful settings. In this paper, we present a quite versatile framework to deal with various constraints on the facilities in the colorful setting, by combining ideas from the iterative greedy procedure for Colorful $k$-Center by Inamdar and Varadarajan with new ingredients. To exemplify our framework, we show how it leads, for a constant number $\gamma$ of colors, to the first constant-factor approximations for both Colorful Matroid Supplier with respect to a linear matroid and Colorful Knapsack Supplier. In both cases, we readily get an $O(2^\gamma)$-approximation. Moreover, for Colorful Knapsack Supplier, we show that it is possible to obtain constant approximation guarantees that are independent of the number of colors $\gamma$, as long as $\gamma=O(1)$, which is needed to obtain a polynomial running time. More precisely, we obtain a $7$-approximation by extending a technique recently introduced by Jia, Sheth, and Svensson for Colorful $k$-Center.


翻译:将公平因素纳入传统组群问题的一个吸引人的方法是引入多种覆盖限制。 这是将强(或超)设置自然地普遍化的强(或超)设置, 已经对此进行了广泛研究, 并适合各种经典算法技术。 相反, 对于多重覆盖限制( 所谓的彩色设置), 专门技术仅在最近才为美元- 中子组群变量开发, 这也是本文的焦点。 虽然先前的技术假设客户受限, 但它们并没有解决设施的额外限制, 而在非彩色环境中已经广泛研究过。 在本文中, 我们提出了一个非常灵活的框架, 来应对彩色设置( 或超值) 中的各种限制, 将Inamdar 和 Varadarajan 的反复的贪婪程序理念与新元素结合起来。 为了放大我们的框架, 我们展示它是如何导致一个固定的 $( $) 的颜色, 它们不会解决设施的额外限制, 以美元 美元 直线性基数 和 Coloralalalalalalalal 的颜色 技术 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员