Signed networks allow us to model bi-faceted relationships and interactions, such as friend/enemy, support/oppose, etc. These interactions are often temporal in real datasets, where nodes and edges appear over time. Learning the dynamics of signed networks is thus crucial to effectively predict the sign and strength of future links. Existing works model either signed networks or dynamic networks but not both together. In this work, we study dynamic signed networks where links are both signed and evolving with time. Our model learns a Signed link's Evolution using Memory modules and Balanced Aggregation (hence, the name SEMBA). Each node maintains two separate memory encodings for positive and negative interactions. On the arrival of a new edge, each interacting node aggregates this signed information with its memories while exploiting balance theory. Node embeddings are generated using updated memories, which are then used to train for multiple downstream tasks, including link sign prediction and link weight prediction. Our results show that SEMBA outperforms all the baselines on the task of sign prediction by achieving up to an 8% increase in the AUC and up to a 50% reduction in FPR. Results on the task of predicting signed weights show that SEMBA reduces the mean squared error by 9% while achieving up to 69% reduction in the KL-divergence on the distribution of predicted signed weights.
翻译:签名的网络允许我们模拟双面关系和互动, 如朋友/ 敌人、 支持/ 应用等。 这些互动通常在真实的数据集中是时间性的, 其中节点和边缘会长期出现。 因此, 学习签名网络的动态对于有效预测未来链接的标志和力量至关重要。 现有的工作模式要么是已签署的网络, 或动态网络, 但不是两者同时存在。 在这项工作中, 我们研究动态签名的网络, 其中链接既签字, 也随着时间的演变。 我们的模型用记忆模块和平衡聚合( 名称 SEMBA) 学习了签名的进化链接。 每个节点都为正反互动保留了两个单独的内存编码。 在新边缘到来的时候, 每一个互动节点将签名的信息与记忆汇总在一起,同时利用平衡理论。 最新记忆生成了“ 嵌入”, 用于培训多个下游任务, 包括连接信号的预测和重量预测。 我们的结果表明, SEMBA 超越了签署预测任务的所有基线, 达到AU 的8%, 并达到50 % 已签名的递减 KPR 任务 。