Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high performance and low complexity precoding method has been the focus in the last decade. The traditional algorithms including the zero-forcing (ZF) algorithm and the weighted minimum mean square error (WMMSE) algorithm failed to achieve a satisfactory trade-off between complexity and performance. In this paper, leveraging on the power of deep learning, we propose a low-complexity precoding design framework for MU-MIMO systems. The key idea is to transform the MIMO precoding problem into the multiple-input single-output precoding problem, where the optimal precoding structure can be obtained in closed-form. A customized deep neural network is designed to fit the mapping from the channels to the precoding matrix. In addition, the technique of input dimensionality reduction, network pruning, and recovery module compression are used to further improve the computational efficiency. Furthermore, the extension to the practical MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) system is studied. Simulation results show that the proposed low-complexity precoding scheme achieves similar performance as the WMMSE algorithm with very low computational complexity.
翻译:使用预先编码来抑制多用户干扰是一种众所周知的提高多用户多投入多产出(MU-MIMO)系统光谱效率的技术,而追求高性能和低复杂性的预编码方法一直是过去十年的焦点。传统的算法,包括零强制算法和加权最小平均平方差算法,未能在复杂性和性能之间实现令人满意的权衡。在本文中,利用深层学习的力量,我们提议为MU-MIMO系统建立一个低兼容性预编码设计框架。关键的想法是将MIMO预编码问题转化为多投入单输出单输出预编码问题,在其中,最佳预编码结构可以以封闭形式获得。一个定制的深层内线网络,旨在将从频道到预编码矩阵的映射匹配。此外,投入维度减少、网络运行和回收模块压缩等技术被用于进一步提高计算效率。此外,将MIMO预编码预编码问题转换成多输入单产出预编码问题,将MIMO(MIMO)预编码问题转化为实际的IMO-MIMO(MIS-MIS-MV-R)的低频率计算方法的扩展,以SIMUDMLS-S-comma-comma-comma-commal 之前的计算方法,以S-comma-s-sal-commal-commal-sal-sal-commal-commal-commal-commal-commal-s-s-sal-s-sal-commal-commal-sal-sal-sal-sal-saliscal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-salalalal-salalal-sal-salalal-sal-sal-sal-sal-sal-sal-al-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal