Active learning aims to improve the performance of task model by selecting the most informative samples with a limited budget. Unlike most recent works that focused on applying active learning for image classification, we propose an effective Consistency-based Active Learning method for object Detection (CALD), which fully explores the consistency between original and augmented data. CALD has three appealing benefits. (i) CALD is systematically designed by investigating the weaknesses of existing active learning methods, which do not take the unique challenges of object detection into account. (ii) CALD unifies box regression and classification with a single metric, which is not concerned by active learning methods for classification. CALD also focuses on the most informative local region rather than the whole image, which is beneficial for object detection. (iii) CALD not only gauges individual information for sample selection, but also leverages mutual information to encourage a balanced data distribution. Extensive experiments show that CALD significantly outperforms existing state-of-the-art task-agnostic and detection-specific active learning methods on general object detection datasets. Based on the Faster R-CNN detector, CALD consistently surpasses the baseline method (random selection) by 2.9/2.8/0.8 mAP on average on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO. Code is available at \url{https://github.com/we1pingyu/CALD}
翻译:主动学习的目的是通过选择预算有限、信息最丰富的样本来改进任务模式的绩效。与最近侧重于为图像分类应用积极学习的最新工作不同,我们提出了一种有效的基于一致性的物体探测主动学习方法(CALD),该方法充分探索原始数据和扩大数据之间的一致性。 CALD有三项令人感兴趣的好处。 (一) CALD是通过调查现有主动学习方法的弱点而系统地设计的,这些方法没有考虑到物体探测的独特挑战。 (二) CALD用单一的尺度统一了盒式回归和检测性积极学习方法,这与积极分类的学习方法无关。 CALD还侧重于信息最丰富的当地区域,而不是整个图像,这有利于目标探测。 (三) CALD不仅测量原始数据与扩充数据之间的一致性,而且还利用相互信息鼓励均衡的数据分配。 (一) 广泛的实验表明,CALD大大超越了一般物体探测数据集中现有的状态任务识别和检测方法。 以更快的R-CN检测方法为基础, CALD在2007年平均的MALA/MALR8/CO中持续超过基准方法。