We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in(0,\infty)^{I\times \cdots\times I}$ generating Poisson observations can be accurately estimated from approximately $IR^2\log_2^2(I)$ non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known a priori.
翻译:我们为零膨胀的多路计数数据提出了一个新的统计推论模式, 从而不必区分真实的和虚假的零计数。 我们的方法忽略了所有零项, 并在正数上应用零流的Poisson回归。 推论是通过在 Poisson 参数空间上实施低级结构的推论完成的。 我们的主要结果显示, 美元- 美元一等- 美元等值 $$@ boldsybol_ mathscr{M ⁇ in( 0,\ infty) ⁇ I\times\ ddots\time I} 生成的Poisson 观察结果, 可以从大约 $IR2\log_2( I) (美元) 非零计数的非负数计算得出准确的估计值。 一些数字实验显示, 我们的零调整模式与已知的虚数点位置是先知的理想假设相近的。