Concentration shift keying (CSK) is a widely adopted modulation technique for molecular communication-based nanonetworks, which is a key enabler for the Internet of Bio-NanoThings (IoBNT). However, existing methods provide optimal error performance at the cost of high operational complexity that scales poorly as the number of transmitters, $K$, increases. This paper proposes a novel $M$-ary CSK method termed CSK with Common detection Thresholds (CSK-CT). CSK-CT uses $\textit{common}$ thresholds that are sufficiently low to ensure the reliable detection of symbols transmitted by every transmitter, regardless of their distance. We derive closed-form expressions to obtain the common thresholds and release concentrations. To enhance the error performance, we optimize the release concentration using a scaling exponent that further optimizes the common thresholds. We evaluate the performance of CSK-CT in comparison to the benchmark CSK for varying values of $K$ and $M$. In terms of the error probability, CSK-CT offers between $10^{-7}$ and $10^{-4}$, which are a substantial improvement from the $10^{-4}$ to $10^{-3}$ offered by the benchmark. In terms of complexity, CSK-CT is $\textit{O}\big(n\big)$ and does not scale with $K$ but $M$ ($M\ll K$), while the benchmark is $\textit{O}\big(n^2\big)$. Furthermore, CSK-CT showcased the ability to mitigate inter-symbol interference, although this facet warrants further investigation. Due to its low error probability, improved scalability, low complexity, and potential ISI mitigation features, CSK-CT demonstrates benefits in applications of IoBNT focused on data-gathering. Specifically, its utility is well-noted in settings where a computationally strained receiver collects sensitive health-related data from multiple transmitters.
翻译:暂无翻译