Samples of dynamic or time-varying networks and other random object data such as time-varying probability distributions are increasingly encountered in modern data analysis. Common methods for time-varying data such as functional data analysis are infeasible when observations are time courses of networks or other complex non-Euclidean random objects that are elements of general metric spaces. In such spaces, only pairwise distances between the data objects are available and a strong limitation is that one cannot carry out arithmetic operations due to the lack of an algebraic structure. We combat this complexity by a generalized notion of mean trajectory taking values in the object space. For this, we adopt pointwise Fr\'echet means and then construct pointwise distance trajectories between the individual time courses and the estimated Fr\'echet mean trajectory, thus representing the time-varying objects and networks by functional data. Functional principal component analysis of these distance trajectories can reveal interesting features of dynamic networks and object time courses and is useful for downstream analysis. Our approach also makes it possible to study the empirical dynamics of time-varying objects, including dynamic regression to the mean or explosive behavior over time. We demonstrate desirable asymptotic properties of sample based estimators for suitable population targets under mild assumptions. The utility of the proposed methodology is illustrated with dynamic networks, time-varying distribution data and longitudinal growth data.


翻译:在现代数据分析中,人们越来越多地看到动态或时间变化网络和其他随机物体数据的样本,如时间变化概率分布等,现代数据分析越来越多地遇到动态或时间变化网络和其他随机物体的样本,例如时间变化概率分布。当观测是作为一般计量空间要素的网络或其他复杂的非欧化随机物体的时间轨迹时,功能数据分析等时间变化数据分析等常见方法是行不通的。在这类空间中,数据对象之间只有对等距离,而且严格的限制是,由于缺乏代数结构,无法进行算术操作。我们通过物体空间平均轨迹取值的普遍概念来应对这一复杂性。为此,我们采用了点对Fr\'echet 方法,然后在单个时间课程和估计的Fr\'echet 平均轨迹之间构建点变化距离,从而代表了功能数据中时间变化对象和网络。这些距离轨迹的主要组成部分分析可以显示动态网络和对象时间流流流流流的有趣特征,并且有助于下游分析。我们的方法也使得有可能研究时间变化对象时间变化物体的经验动态动态动态动态动态动态动态动态变化,包括动态回归和动态变化模型的模型,我们以模拟模型为基础的模型,我们以显示,在时间变化变化变化变化模型中的数据模型中的数据分布。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Dynamic Principal Subspaces in High Dimensions
Arxiv
0+阅读 · 2021年6月2日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Dynamic Principal Subspaces in High Dimensions
Arxiv
0+阅读 · 2021年6月2日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员