Principal component analysis (PCA) is a versatile tool to reduce the dimensionality which has wide applications in statistics and machine learning community. It is particularly useful to model data in high-dimensional scenarios where the number of variables $p$ is comparable to, or much larger than the sample size $n$. Despite extensive literature on this topic, researchers have focused on modeling static principal eigenvectors or subspaces, which are not suitable for stochastic processes that are dynamic in nature. To characterize the change in the whole course of high-dimensional data collection, we propose a unified framework to directly estimate dynamic principal subspaces spanned by leading eigenvectors of covariance matrices. We formulate an optimization problem by combining the local linear smoothing and regularization penalty together with the orthogonality constraint, which can be effectively solved by the proximal gradient method for manifold optimization. We show that our method is suitable for high-dimensional data observed under both common and irregular designs. In addition, theoretical properties of the estimators are investigated under $l_q (0 \leq q \leq 1)$ sparsity. Extensive experiments demonstrate the effectiveness of the proposed method in both simulated and real data examples.


翻译:主要元件分析(PCA)是用于减少在统计和机器学习界中广泛应用的维度的多功能工具,在变量数量可与或大大大于抽样规模的美元等高维假设情况下,在高维假设情景中,对数据进行模型化,尤其有用。尽管关于这个专题的大量文献,研究人员仍然侧重于对静态主要偏移器或子空间进行模型化,这些模型不适合具有动态性质的随机过程。为了说明高维数据收集整个过程的变化特点,我们提出了一个统一框架,直接估计由变异矩阵的主要天体构成的动态主要次空间。我们通过将局部线性平滑和整顿处罚与正向限制结合起来来形成优化问题,这可以通过用于多元优化的准轴梯度方法有效解决。我们表明,我们的方法适合在普通和不规则设计下观测的高维数据。此外,估计器的理论特性是在 $_q (0\leq) q q\leq\leq q 1) 和模拟数据模型中的拟议模型示例。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员