Aspect-level sentiment classification aims to distinguish the sentiment polarities over one or more aspect terms in a sentence. Existing approaches mostly model different aspects in one sentence independently, which ignore the sentiment dependencies between different aspects. However, we find such dependency information between different aspects can bring additional valuable information. In this paper, we propose a novel aspect-level sentiment classification model based on graph convolutional networks (GCN) which can effectively capture the sentiment dependencies between multi-aspects in one sentence. Our model firstly introduces bidirectional attention mechanism with position encoding to model aspect-specific representations between each aspect and its context words, then employs GCN over the attention mechanism to capture the sentiment dependencies between different aspects in one sentence. We evaluate the proposed approach on the SemEval 2014 datasets. Experiments show that our model outperforms the state-of-the-art methods. We also conduct experiments to evaluate the effectiveness of GCN module, which indicates that the dependencies between different aspects is highly helpful in aspect-level sentiment classification.
翻译:分层情绪分类旨在区分一个句子中一个或一个以上词语的情感两极分化。现有方法大多在一句中独立地模拟不同方面,忽视不同方面之间的情感依赖性。然而,我们发现,不同方面之间的这种依赖性信息可以带来更多有价值的信息。在本文件中,我们提议了一个基于图形相联网络(GCN)的新颖的层面情绪分类模式,该模式可以有效捕捉一个句子中多个分布区之间的情感依赖性。我们的模式首先引入双向关注机制,将每个方面及其上下文词中的方代表的定位编码编码为不同的方位,然后将GCN用于关注机制,以捕捉一个句子中不同方面之间的情感依赖性。我们评估了SemEval 2014数据集的拟议方法。实验表明,我们的模型与最新方法不相符。我们还进行实验,以评价GCN模块的有效性,该模块表明不同方面的依赖性在方位感化分类方面非常有用。