We consider the problem of embedding a dynamic network, to obtain time-evolving vector representations of each node, which can then be used to describe the changes in behaviour of a single node, one or more communities, or the entire graph. Given this open-ended remit, we wish to guarantee stability in the spatio-temporal positioning of the nodes: assigning the same position, up to noise, to nodes behaving similarly at a given time (cross-sectional stability) and a constant position, up to noise, to a single node behaving similarly across different times (longitudinal stability). These properties are defined formally within a generic dynamic latent position model. By showing how this model can be recast as a multilayer random dot product graph, we demonstrate that unfolded adjacency spectral embedding satisfies both stability conditions, allowing, for example, spatio-temporal clustering under the dynamic stochastic block model. We also show how alternative methods, such as omnibus, independent or time-averaged spectral embedding, lack one or the other form of stability.
翻译:我们考虑的是嵌入动态网络的问题,以获得每个节点的时间变化矢量代表,然后可以用来描述单一节点、一个或多个社区或整个图形的行为变化。根据这一开放式职权范围,我们希望保证节点的时空定位稳定:将同一位置分配为同一位置,直至噪音,在特定时间(跨区稳定)和恒定位置(直至噪音)相似,在不同时间(纵向稳定)形成类似的单一节点。这些属性在通用动态潜在位置模型中正式定义。通过显示该模型如何被重新定位为多层随机点产品图,我们证明演化的相近光谱嵌入两种稳定条件都符合,例如,允许在动态随机区块模型下进行波点-时速组合。我们还展示了各种替代方法,如总括、独立或时间平均光谱嵌入等,缺乏一种或另一种稳定形式。