We propose a general framework to adapt various local explanation techniques to recurrent neural networks. In particular, our explanations add temporal information, which expand explanations generated from existing techniques to cover data points that have different lengths compared to the original input data point. Our approach is general as it only modifies the perturbation model and feature representation of existing techniques without touching their core algorithms. We have instantiated our approach on LIME and Anchors. Our empirical evaluation shows that it effectively improves the usefulness of explanations generated by these two techniques on a sentiment analysis network and an anomaly detection network.
翻译:我们提议了一个总体框架,使各种当地解释技术适应经常性神经网络,特别是,我们的解释增加了时间信息,将现有技术产生的解释范围扩大,以涵盖与原始输入数据点相比长度不同的数据点。我们的方法很笼统,因为它只改变了现有技术的扰动模型和特征表现,而没有触及其核心算法。我们已经即时地对LIME和停机坪采取了办法。我们的实证评估表明,它有效地提高了这两种技术在情绪分析网络和异常现象探测网络上所作的解释的效用。