We study the MaxRes rule in the context of certifying unsatisfiability. We show that it can be exponentially more powerful than tree-like resolution, and when augmented with weakening (the system MaxResW), p-simulates tree-like resolution. In devising a lower bound technique specific to MaxRes (and not merely inheriting lower bounds from Res), we define a new proof system called the SubCubeSums proof system. This system, which p-simulates MaxResW, can be viewed as a special case of the semialgebraic Sherali-Adams proof system. In expressivity, it is the integral restriction of conical juntas studied in the contexts of communication complexity and extension complexity. We show that it is not simulated by Res. Using a proof technique qualitatively different from the lower bounds that MaxResW inherits from Res, we show that Tseitin contradictions on expander graphs are hard to refute in SubCubeSums. We also establish a lower bound technique via lifting: for formulas requiring large degree in SubCubeSums, their XOR-ification requires large size in SubCubeSums.
翻译:在验证不满足性的背景下,我们研究了 MaxRes 规则。 我们显示,它比树状分辨率的分辨率具有指数性强, 并且如果通过变弱( 系统 MaxResW) 来增强它, 则它比树状分辨率更强大, p模拟像树状分辨率。 在设计一个针对 MaxRes 的较低约束技术( 而不仅仅是继承Res 的较低界限) 时, 我们定义了一个新的验证系统, 称为子立方体Sums 验证系统。 这个系统, p模拟 MaxResW 的系统, 可以被视为半成形镜式 Sherali- Adams 验证系统的特例。 在表达性方面, 它是在通信复杂性和扩展复杂性的背景下研究的锥形政府的整体限制 。 我们显示, 它不是由 Res 模拟的。 使用与 MaxResW 从 Res 继承的较低界限不同的证据技术, 我们显示, 扩展式图形上的震动性矛盾在子立方体中很难被反驳。 我们还通过提升来建立一种较弱约束的技术: 对于需要较大程度的公式的子立方方体, 需要大型的立方体 。